

Open RESEARCH Access ARTICLE

Синтез многокомпонентных материалов для сенсоров и датчиков и их исследование

А. П. Сигаев

Пензенский государственный университет, Россия, 440026 г. Пенза, ул. Красная, 40

И. А. Аверин

Пензенский государственный университет, Россия, 440026 г. Пенза, ул. Красная, 40

Аннотация. Разработана методика получения наноструктур на основе многокомпонентных систем. Разработана методика и проведен качественный и количественный анализ пленкообразующих золей и наноструктур на основе многокомпонентных систем с помощью ИК-спектроскопии. С помощью анализа количественного состава установлены экспериментальные зависимости пропускания ИК-излучения от массовой доли компонента, позволяющие определять содержание SiO₂, SnO₂, In_2O_3 в исследуемом золе. По полученным ИКспектрам пропускания произведены расчеты концентраций адсорбированных атомов газов на поверхности соответствующих наноструктур, отожженных при различных температурах, и для сформировавшихся образцов с различным составом. Разработана методика определения толщины исследуемых пленок на основе многокомпонентных систем с различным составом методом эллипсометрии. Установлено влияние условий синтеза на состав, толщину пленок и концентрацию адсорбированных атомов на их поверхности.

Ключевые слова: золь-гель технология, ИК-спектроскопия, анализ качественного и количественного состава, эллипсометрия, концентрации адсорбированных атомов газов, толщина, наноструктуры на основе многокомпонентных систем.

В настоящее время многокомпонентные наноструктуры на основе смешанных оксидов вызывают большой интерес для фундаментальных научных исследований и прикладного технического применения. Изготовление чувствительных элементов для адсорбционных газовых сенсоров и датчиков вакуума – пример использования данных материалов, позволяющих, в свою очередь, решать следующие задачи: снижение рабочих температур, повышение чувствительности и селективности.

Многокомпонентные наноструктуры могут быть получены разными методами, среди которых особенно стоит выделить золь-гель технологию, которая обладает рядом преимуществ над остальными. Кратко перечислим их: получаемая структура обладает ультрадисперсной фазой; возможен контроль за поверхностью материла на ранней стадии получения; метод отличается высокой степенью чистоты, а также относительно прост и дешев в реализации; образующиеся соединения до молекулярного и ионного уровней имеют маленькое количество микронеоднородностей за счет гомогенности распределения компонентов; возможно получение новых кристаллических и аморфных фаз, что другими методами затруднительно.

Получение методом золь-гель технологии наноструктур состава включает в себя четыре основные операции: обработка поверхности кремниевых подложек, синтез пленкообразующих золей, формирование пленок на подложках и их термический отжиг. Каждый из этих этапов оказывает существенное влияние на свойства синтезируемых пленок [1].

На первой стадии производится процедура очистки поверхности кремниевых подложек. Сначала совершается поэтапная промывка подложек в ацетоне и дистиллированной воде, затем – их обработка в ультразвуковой ванне.

Дальнейшим этапом является изготовление необходимых золей. В основе пленкообразования из золей лежат два основополагающих процесса: реакции гидролиза и поликонденсации алкокси-

^{© 2016} Сигаев А. П. , Аверин И. А.

Данная статья доступна по условиям всемирной лицензии Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), которая дает разрешение на неограниченное использование, копирование на любые носители при условии указания авторства, источника и ссылки на лицензию Creative Commons, а также изменений, если таковые имеют место.

соединений. Поэтому для приготовления пленкообразующих золей сначала смешиваются ТЭОС и этанол, что приводит к реакции обменного взаимодействия, а затем в полученный кремнеорганический эфир добавляются дистиллированная вода для запуска реакции гидролиза и соляная кислота в качестве катализатора.

Полученный продукт гидролиза – этиловый эфир ортокремниевой кислоты – далее претерпевает поликонденсацию, в результате которой в растворе образуется главная цепь полимерной молекулы, построенная из атомов кремния и кислорода.

В полученные золи ортокремниевой кислоты, обладающие пленкообразующими свойствами, добавляют соответствующие неорганические модифицирующие добавки, что способствует образованию пор в получаемых силикатных пленках [2].

На третьем этапе золи наносятся на кремниевые подложки методом центрифугирования, обеспечивающим высокую однородность толщины пленки, при скорости вращения столика 2000 об/мин в течение 20 с.

Последняя стадия – термическая обработка, которая осуществляется в диапазоне температур 100–600 °С в течение 30 мин в воздушной среде.

Для исследования свойств материалов на основе многокомпонентных систем (SiO₂-SnO₂, SiO₂-SnO₂-In₂O₃ и SiO₂-SnO₂-ZnO) в данной работе использованы два основных метода: ИК-спектроскопия (для анализа качественного и количественного состава пленкообразующих золей и на их основе – многокомпонентных наноструктур и определения концентраций адсорбированных атомов газов) и эллипсометрия (для анализа толщин пленок).

Рис. 1. ИК-спектры пропускания пленкообразующих золей на основе SiO₂-SnO₂-ZnO

ИК-спектры пропускания исследуемых золей (рис. 1) содержат полосы поглощения, характерные как для продуктов гидролиза ТЭОС (795, 880, 970 см⁻¹), так и для продуктов его поликонденсации (1045, 1080 см⁻¹), что указывает на незавершенность реакции гидролитической поликонденсации. На содержание в золе этилового спирта и воды указывают линии поглощения 1170, 1275, 1320, 1380, 1455 см⁻¹. На совместную поликонденсацию ТЭОС и гидроксидов модифицирующих соединений Sn(OH)₄ указывает слабая полоса поглощения с максимум 1420 см⁻¹, характеризующая колебания кислорода в связи Si-O-Sn.

ИК-спектры, полученные при различных температурах термообработки, несколько отличаются от ИК-спектров пленкообразующих золей и имеют ряд характеристических полос и пиков поглощения, позволяющих определить не только качественный состав наноструктур на основе смешанных оксидов, но и физико-химические процессы, происходящие при их формировании (рис. 2).

Пики поглощения 615, 805, 1110 см⁻¹ являются характеристическими для подложек из окисленного монокристаллического кремния, а особенности в области 670, 970, 1110, 1450 см⁻¹ соответствуют наноструктуре, образовавшейся на их поверхности. Следует отметить, что линия поглощения при 670 см⁻¹ отвечает образованию кластеров SnO₂. На их встраивание в кремнеземную сетку указывает слабая полоса поглощения с максимум 1450 см⁻¹, характеризующая валентные ассиметричные колебания связей Si-O-Sn.

Об испарении растворителя можно судить по изменению в ИК-спектрах интенсивности линий поглощения при 740, 1650, 2970, 3100–3700 см⁻¹. Эти линии указывают на присутствие в исследуемых пленках этилового спирта и воды. На термическое разложение соответствующих гидроксидов (Si(OH)₄, Sn(OH)₄, In(OH)₃, Zn(OH)₂) и переход некоторых из них от аморфного состояния к кристаллическому указывает изменение интенсивности полос поглощения с максимумами 670, 970 и 1110 см⁻¹.

Изменение в процессе отжига ширины и интенсивности полосы поглощения 1000–1200 см⁻¹ связано с частичным схлопыванием фрактальных агрегатов, в результате чего изменяются концентрация и угол между атомами связи Si-O-Si клеточной структуры. Изменение пористости наноструктуры можно проследить по пику поглощения 2360 см⁻¹, характеризующего валентные колебания связей С-О атмосферного углекислого газа.

Рис. 2. ИК-спектры наноструктур на основе SiO₂-SnO₂-ZnO, отожженных при различных температурах

Анализ количественного состава пленкообразующих золей и наноструктур на основе многокомпонентных систем позволяет проконтролировать реальные составы формирующегося материала на всех стадиях его синтеза.

Например, для определения количественного состава исследуемых золей на основе SiO₂-SnO₂-ZnO может использоваться пик поглощения при 950 см⁻¹, отвечающий за валентные симметричные колебания связей Si-OH (рис. 3,*a*). На основе экспериментальных данных получена зависимость коэффициента пропускания инфракрасного излучения через исследуемые золи (*T*) от массовой доли диоксида кремния на пике поглощения 950 см⁻¹ (рис. 3,*б*), позволяющая рассчитать реальный состав золя и сравнить его с требуемым значением.

Рис. 3. ИК-спектры пропускания исследуемых золей на основе SiO₂-SnO₂-ZnO (*a*) и зависимость коэффициента пропускания инфракрасного излучения через исследуемые золи от массовой доли SiO₂ на пике поглощения 950 см⁻¹ (*б*)

На поверхности выбранных для исследования пленок на основе двух- и трехкомпонентных систем (SiO₂-SnO₂, SiO₂-SnO₂-ZnO, SiO₂-SnO₂-In₂O₃), которые могут быть использованы в качестве чувствительных элементов газовых сенсоров и датчиков вакуума, адсорбируются атмосферные газы (углекислый газ, пары воды), которые влияют на свойства наноструктур (окислители, восстановители, которые влияют на проводимость). Отсюда следует, что определение концентрации CO_2 и H_2O является важной задачей, решение которой позволит контролировать свойства получаемых пленок уже на стадии формирования материала. Так как для исследования выбраны два типа газов, то будут учитываться только два диапазона: 3100–3700 см⁻¹, характеризующий колебания валентных симметричных связей H-O-H, и 2300–2380 см⁻¹, характеризующий колебания связей С-О.

Рассчитать концентрации молекул воды и углекислого газа можно по формуле [3]

$$C = \frac{27c^2}{\pi q^2} \cdot \varepsilon_0 \cdot \frac{\sqrt{\varepsilon}\mu_{AB}}{(\varepsilon+2)^2},\tag{1}$$

где *с* – скорость света в вакууме; *q* – заряд электрона; ε_0 – диэлектрическая постоянная; ε – диэлектрическая проницаемость растворителя; μ_{AB} – приведенная масса выбранной двухатомной системы (H-O или C-O); *S* – площадь полосы интенсивности на ИК-спектре.

Сначала анализируются ИК-спектры многокомпонентных систем, отожженных при различных температурах. На их основании и формулы (1) произведены расчеты, результаты которых представлены в виде графиков (рис. 4).

Рис. 4. Зависимость концентраций адсорбированных атомов углекислого газа (*a*) и паров воды (б) от температуры отжига для многокомпонентных наноструктур

С увеличением температуры обработки концентрации воды и атмосферного углекислого газа уменьшаются. Полученные данные согласуются с физико-химическими процессами, происходящими в пленках, и связаны с интенсивным испарением растворителя и с разложением соответствующих гидроксидов под действием температуры [4].

Аналогичные действия выполняются для многокомпонентных наноструктур. Результаты для пленок на основе SiO₂-SnO₂ представлены в виде графика (рис. 5).

Рис. 5. Зависимость концентрации соответствующих адсорбированных газов от массовой доли SnO₂ в составе пленки

По характеру изменения концентрации адсорбированных паров воды от состава наноструктуры полученную зависимость условно можно разделить на две области. В одной из них, соответствующей

низкому содержанию олова (от 5 до 10 %), наблюдается резкий рост концентрации. Возможно, это связано с увеличением при данном составе системы удельной поверхности формирующейся структуры (ксерогеля), вызванным встраиванием мономерных звеньев с диоксидом олова в полимерную сетку диоксида кремния. Вторая область, характеризующаяся постепенным нарастанием массовой доли диоксида олова (10–100 %), примечательна плавным спадом концентрации адсорбированной воды. Предположительно, это можно объяснить соответствующим составу уменьшением удельной площади ксерогеля. В свою очередь, это связано с тем, что увеличение содержания олова приводит к образованию однофазных агрегатов диоксида олова [5]. Повышение концентрации углекислого газа с увеличением массовой доли SnO₂ в составе пленки также можно пояснить изменением пористости образцов.

Измерение толщины пленки производилось на эллипсометре *SENTECH SENDURO*. На образец, загруженный и зафиксированный на измерительном столике, направляется пучок света с изменяющейся длиной волны от 280 до 850 нм. На эллипсометре измеряется изменение эллипсометрических параметров ψ и Δ (относительное изменение амплитуд для *p*- и *s*-поляризаций и сдвиг фаз между ни-ми) от длины волны [6].

Дальнейшие расчеты сводятся к тому, что для полученных зависимостей высчитываются коэффициенты соответствующих им полиномов, которые по максимуму должны совпадать с полученными опытным путем результатами. Одним из таких коэффициентов является толщина пленки. Причем при вычислениях учитывается толщина подложки, равной 0,4 мкм. Экспериментальные зависимости сравнивались с подобранной расчетной моделью, основанной на информации о материалах, содержащихся в библиотеке данных эллипсометра.

Итогом измерений стало установление зависимости толщины пленки от массовой доли диоксида олова (рис. 6). Увеличение содержания SnO_2 в многокомпонентной системе в 3 раза сопровождается утончением пленки с 273 до 73 нм.

Рис. 6. Зависимость толщины пленки от массовой доли диоксида олова в составе наноструктуры на основе SiO₂-SnO₂: *1* – экспериментальные данные; *2* – аппроксимация

Проведенные исследования могут найти применение при разработке технологии получения наноструктурированных материалов с заранее заданными свойствами, что позволит создать приборы нано- и микроэлектроники с улучшенными параметрами.

Список литературы

- 1. Аверин, И. А. Особенности синтеза и исследования нанокомпозиционнных пленок, полученных методом золь-гель технологии / И. А. Аверин, А. А. Карманов, Р. М. Печерская, И. А. Пронин // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2012. № 2. С.155–162.
- 2. Мошников, В. А. Золь-гель технология микро- и нанокомпозитов : учеб. пособие / В. А. Мошников, Ю. М. Таиров, Т. В. Хамова, О. А. Шилова ; под ред. О. А. Шиловой. 1-е изд. СПб. : Лань, 2013 295 с.
- 3. Кутков, И. В. Качественный и количественный анализ пленок нитрида кремния методом ИК-спектроскопии / И. В. Кутков, М. И. Пехтелев // Доклады ТУСУР. – 2014. – № 1. – С. 92–94.
- 4. Аверин, И. А. Исследование процессов, происходящих в нанокомпозитах состава SiO₂-Me_xO_y при термической обработке, методом ИК-спектроскопии / И. А. Аверин, С. Е. Игошина, А. А. Карманов, А. П. Сигаев //

Материалы и технологии гибкой электроники : сб. тр. 17-й науч. молодеж. школы с междунар. участием. – СПб. : Изд-во СПбГЭТУ «ЛЭТИ», 2014. – С. 51–52.

- 5. Леньшин, А. С. Исследование удельной поверхности перспективных пористых материалов и наноструктур методом тепловой десорбции азота / А. С. Леньшин, Е. В. Мараева // Известия СПбГЭТУ «ЛЭТИ». 2011. № 6. С. 9–15.
- 6. Швец, В. А. Эллипсометрия прецизионный метод контроля тонкопленочных структур с субнанометровым разрешением / В. А. Швец, Е. В. Спесивцев, С. В. Рыхлицкий, Н. Н. Михайлов // Российские нанотехнологии. – 2009. – Т. 4, № 3–4. – С. 72–84.

Сигаев, А. П.

Синтез многокомпонентных материалов для сенсоров и датчиков и их исследование / А. П. Сигаев, И. А. Аверин // Инжиниринг и технологии. – 2016. – Vol. 1(1). – DOI 10.21685/2587-7704-2016-1-1-4