УДК 621.318 DOI 10.21685/2587-7704-2018-3-1-1

RESEARCH ARTICLE

Способы форсированного управления приводными электромагнитами

В. В. Антипенко

Пензенский государственный университет, Россия, 440026 г. Пенза, ул. Красная, 40

И. А. Аверин

Пензенский государственный университет, Россия, 440026 г. Пенза, ул. Красная, 40

Аннотация. Рассмотрены методы форсированного управления приводами электромагнитными. Произведено моделирование датчика перехода напряжения через ноль.

Ключевые слова: микроконтроллер, электромагнит, детектор, моделирование, регулирование мощности, фазовое управление.

Methods for enhanced control over driving electromagnets

V. V. Antipenko

Penza State University, 40 Krasnaya Street, 440026, Penza, Russia

I. A. Averin

Penza State University, 40 Krasnaya Street, 440026, Penza, Russia

Abstract. Methods for enhanced control over driving electromagnets are considered. Modeling of the zero-line-intersection voltage sensor is performed.

Key words: microcontroller, electromagnet, detector, modeling, power control, phase control.

Электромагнитные исполнительные устройства широко используются в промышленности и системах автоматики. Основным элементом данных устройств является электромагнит, который может иметь различную конструкцию. В ряде случаев длина линии, питающей клапан, может достигать несколько сотен метров, что вызывает существенное падение напряжения в сети. Также в кабеле могут обнаруживаться электрические помехи от линий электропередач, так как последние создают сильное магнитное поле. В результате наличия проблемы в первом случае снижается эффективность срабатывания исполнительного механизма, во втором случае повышается интенсивность ложных срабатываний исполнительного механизма. При решении указанных проблем возникает задача по снижению интенсивности ложных срабатываний, а также повышению эффективности срабатывания исполнительного механизма, что может быть решено с помощью схем форсированного управления обмоткой электромагнитного привода либо с помощью конструктивных особенностей электромагнита.

Подключение питающей сети с помощью контактов напрямую к обмотке управления электромагнита является нецелесообразным, так как будет производиться большой расход электроэнергии на удержание якоря электромагнита, следовательно, необходимо сделать запас по мощности источника питания, а также будет производиться большой расход мощности на нагрев обмотки.

Для того чтобы избавиться от недостатков, описанных выше, необходимо на обмотку подавать два напряжения: первое — это рабочее, которое необходимо для срабатывания привода, а после того как привод сработал, переключиться на второе — напряжение удержания, необходимое для удержания якоря в рабочем состоянии. Основной недостаток схем форсированного управления заключается в наличии двух источников питания — рабочего и удерживающего напряжений соответственно. Также

существуют схемы форсированного управления, питающиеся от одного источника, однако конструкция приводного электромагнита требует наличия двух или нескольких обмоток, а также коммутирующих их соответствующим образом форсированных контактов для обеспечения требуемых значений магнитодвижущей силы обмоток в режимах рабочего и удержания соответственно. К плюсам таких схем можно отнести их простоту, эффективность функционирования форсированного электромагнитного привода и расширение возможностей его конструктивной реализации. К минусам можно отнести повышенный электрический износ контактов. Устранить данные недостатки можно путем усовершенствований существующих схем форсированного управления, т.е. заменой контактов на силовые электронные полупроводниковые приборы, которые представляют из себя ключи. В качестве полупроводниковых ключей могут использоваться транзисторы, тиристоры, симисторы. Существует несколько способов управления обмоткой приводного электромагнита – релейный, счетнополупериодный и фазовый. Главная задача – управление мощностью, подаваемой в обмотку приводного электромагнита. Предложенная схема форсированного управления приводного электромагнита имеет следующий принцип работы (рис. 1), при подаче внешнего напряжения питания схема управления в течение нескольких секунд подает на катушку электромагнита полное напряжение. При этом приводом развивается максимальное усилие, необходимое для перемещения, присоединенного к штоку исполнительного механизма. При перемещении сердечника внутри привода до упора срабатывает переключатель, и схема управления снижает напряжение, подаваемое на катушку электромагнита до величины удержания.

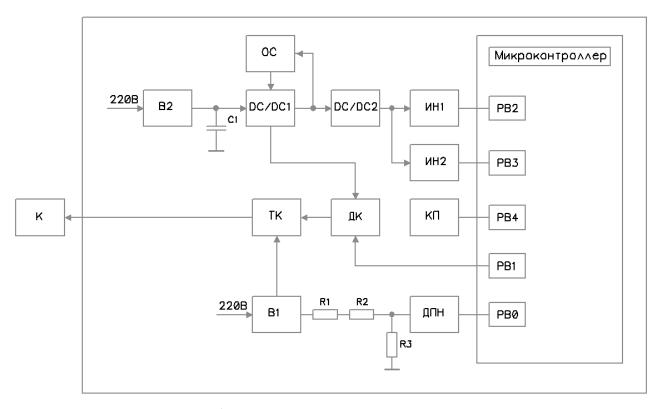
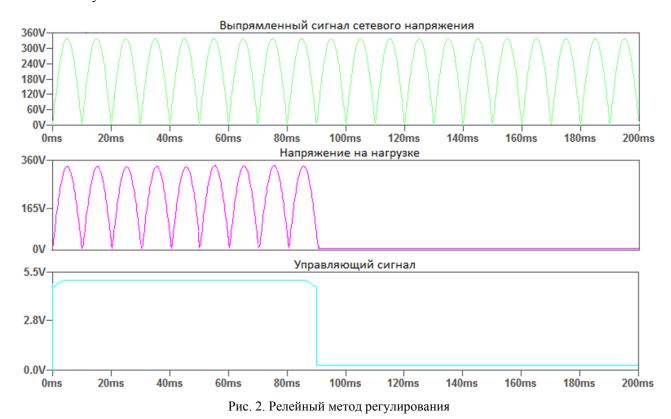


Рис. 1. Функциональная схема платы управления

При этом снижаются потребляемая приводом мощность и нагрев катушки. В случае если после подачи напряжения на привод сердечник не развил максимального усилия в течение нескольких секунд, то схема переходит в режим ожидания. Выход из данного режима и возврат схемы управления в исходное состояние возможны только после снятия с привода внешнего напряжения питания. Недостатком способа форсированного управления является отсутствие возможности регулировать скорость подвижного звена в конце его хода [1].


На сегодняшний день микроконтроллеры являются неотъемлемой частью современной электронной аппаратуры. Микроконтроллеры легко могут быть встроены в любое техническое устройство, позволяя расширить его функциональные возможности. Данный компонент осуществляет повышение эффективности режимной автоматики, что обеспечит надлежащее качество и надежность электроснабжения потребителя. Микроконтроллеры по определенным алгоритмам управляют элек-

тромагнитным приводом для минимизации расхода электроэнергии, контролируют теплофизические процессы с целью оптимизации. Наиболее популярными являются микроконтроллеры AVR, выпускаемые фирмой Atmel. В плане «цена — качество» он является самым оптимальным для разработки устройства управления мощностью в нагрузке [2].

Для проектирования такого устройства необходимо разработать принципиальную схему, написать программу, смоделировать работу программы и произвести трассировку печатной платы.

Управление мощностью, подаваемой в нагрузку, может производиться различными способами: релейным, счетно-полупериодным, фазовым.

Релейный способ (рис. 2) основан на подаче частей полупериодов через нагрузку, а остальные в этом интервале не проходят, т.е. регулирование заключается в периодическом включении и выключении контактора. Преимущество метода в плавном включении нагрузки при сетевом напряжении, близком к нулю.

Данный метод обладает существенным недостатком, связанным с тем, что при периодическом включении контактора происходят колебания с амплитудой dT около своего среднего значения. Отсюда следует, что при различной степени частоты переключения данная величина может быть значительной, что может привести к неисправности устройства.

Счетно-полупериодный метод управления мощностью (рис. 3) позволяет равномерно пропускать полупериоды на всем интервале работ.

Данный метод является одним из самых часто встречаемых в различных современных устройствах. Данный метод не создает помех, но инерционность в отличие от релейного метода значительно ниже.

Фазовый метод (рис. 4) основан на том, что на нагрузку поступает часть каждого полупериода. В зависимости от времени задержки включения будет определяться часть полупериода, которая будет поступать в нагрузку.

Данный метод обладает существенным недостатком, связанным с тем, что может создавать значительные электрические помехи, особенно при включении с середины полупериода при больших токах.

Для того чтобы можно было производить регулирование мощности с помощью микроконтроллера, необходимо определить начало перехода сетевого напряжения через ноль. Момент включения симистора или транзистора определяет форму проходящего полупериода, которая в свою очередь определяет выходную мощность. В качестве датчика перехода сетевого напряжения через ноль мо-

жет быть применен транзистор или транзисторная оптопара. Детектор перехода сетевого напряжения через ноль на транзисторе (рис. 5) работает по следующему принципу: при подаче на базу транзистора выпрямленного напряжения, соответствующего логической единице, управляющий ток базы откроет транзистор и напряжение на коллекторе будет равно нулю, так как сопротивление между эмиттером и коллектором резко уменьшится.

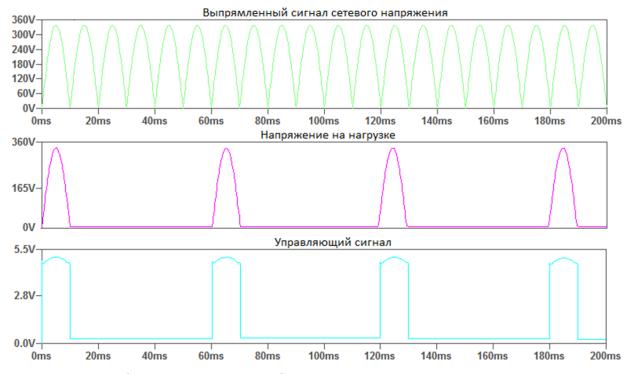


Рис. 3. Временные диаграммы. Счетно-полупериодный метод регулирования



Рис. 4. Фазовый метод регулирования

При снижении выпрямленного напряжения на базе транзистора будет недостаточно тока для открывания транзистора, и напряжение на коллекторе будет определяться током, протекающим от источника питания через резистор R3. Данная схема промоделирована в среде LTSpise, которая пока-

зывает основный принцип формирования импульса в момент перехода сетевого напряжения через ноль (рис. 6).

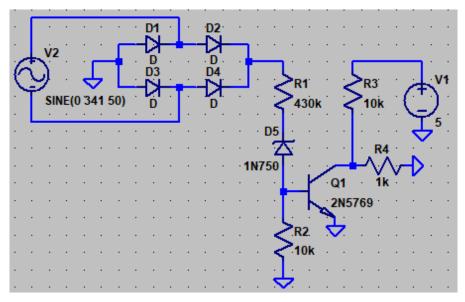


Рис. 5. Детектор перехода сетевого напряжения через ноль

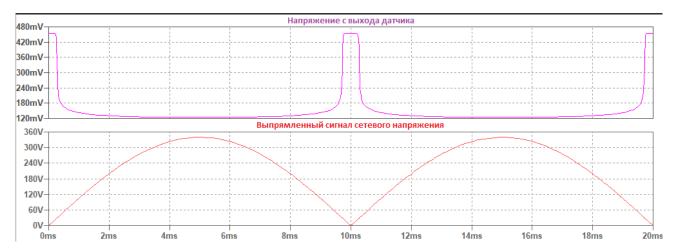


Рис. 6. Принцип формирования импульса на выходе датчика

Преимущество оптопары заключается в наличии гальванической развязки сетевого напряжения от микроконтроллера. Принцип работы датчика основан на пропускании выпрямленного тока через светодиод оптопары. Формируется импульс на выходе такого так же, как и у транзисторного детектора.

При релейном и счетно-полупериодном методе регулирование мощностью осуществляется путем открывания или закрывания симистора. Фазовый метод отличается от ранее описанных тем, что необходимо управлять задержкой включения симистора, таким образом реализуется фазовое регулирование мощностью. В случае использования транзистора регулирование мощностью в нагрузке будет определяться шириной импульса [3].

Заключение

В данной статье рассмотрены основные методы форсированного управления приводными электромагнитами. Каждый из методов работают в двух режимах: первый — это рабочий, который позволяет развить максимальное усилие исполнительного механизма, второй — удержания, необходимый для удержания якоря электромагнита в рабочем состоянии. Рассмотренные методы позволяют производить меньший расход электроэнергии на удержание якоря в рабочем состоянии. Для того чтобы управлять мощностью нагрузки с помощью данных методов, на микроконтроллере необходимо определить момент перехода сетевого напряжения через ноль. Для этого используется выполненный на транзисторе детектор перехода сетевого напряжения через ноль.

Библиографический список

- Павлов, И. Оценка способов форсированного управления приводными электромагнитами и моделирование микропроцессорной системы импульсного управления / И. Павлов // Вестник Чувашского университета. – 2009. – № 3.
- 2. Тетенькин, Ю. Анализ применимости микроконтроллеров во встраиваемых системах контроля и управления / Ю. Тетенькин // Вестник Волжского университета им. В. Н. Татищева. − 2009. − № 14.
- 3. Исаков, С. Применение микроконтроллеров в системах контроля и регулирования температуры / С. Исаков // Вестник Кыргызско-Российского Славянского университета. 2012. Т. 12. № 10.

Антипенко, В. В.

Способы форсированного управления приводными электромагнитами / В. В. Антипенко, И. А. Аверин // Инжиниринг и технологии. – 2018. – Vol. 3(1). – DOI 10.21685/2587-7704-2018-3-1-1.